Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-698051.v2

ABSTRACT

Background: Quantitative computed tomography (QCT) analysis may serve as a tool for assessing the severity of coronavirus disease 2019 (COVID-19)and for monitoringits progress. The present study aimed to assess the association between steroid therapy and quantitative CT parameters in a longitudinal cohort with COVID-19. Methods: Between February 7 and February 17, 2020, 300 chest CT scans from 72 patients with severe COVID-19 were retrospectively collected and classified into five stages according to the interval between hospital admission and follow-up CT scans: Stage 1 (at admission); Stage 2 (3–7 days); Stage 3 (8–14 days); Stage 4 (15–21 days); and Stage 5 (22–31 days). QCT was performed using a threshold-based quantitative analysis to segment the lungaccording to different Hounsfield unit (HU) intervals. The primary outcomeswerechanges in percentage of compromised lung volume (%CL, –500 to 100 HU) at different stages. Multivariate Generalized Estimating Equations were performed after adjusting for potential confounders. Results: Of 72 patients, 31 patients (43.1%) received steroid therapy. Steroid therapy was associated with a decrease in %CL (-3.27% [95%CI, -5.86 to -0.68, P = 0.01]) after adjusting for duration and baseline %CL. Associations between steroid therapy and changes in %CL varied between different stages or baseline %CL (all interactions, P <0.01). Steroid therapy was associated with decrease in %CL after stage 3 (all P <0.05), but not at stage 2. Similarly, steroid therapy was associated with a more significant decrease in %CL in the high CL group ( P <0.05), but not inthe low CL group. Conclusions: Steroid administration was independently associated with a decrease in %CL, with interaction by duration or disease severity in a longitudinal cohort. The quantitative CT parameters, particularly compromised lung volume, may provide a useful tool to monitor COVID-19 progression during the treatment process. Trial registration Clinicaltrials.gov, NCT04953247. Registered July 7, 2021, https://clinicaltrials.gov/ct2/show/NCT04953247


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2108.07731v1

ABSTRACT

Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.


Subject(s)
COVID-19 , Sturge-Weber Syndrome
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.19.20068072

ABSTRACT

Background: Mounting evidence suggests that there is an undetected pool of COVID-19 asymptomatic but infectious cases. Estimating the number of asymptomatic infections has been crucial to understand the virus and contain its spread, which is, however, hard to be accurately counted. Methods: We propose an approach of machine learning based fine-grained simulator (MLSim), which integrates multiple practical factors including disease progress in the incubation period, cross-region population movement, undetected asymptomatic patients, and prevention and containment strength. The interactions among these factors are modeled by virtual transmission dynamics with several undetermined parameters, which are determined from epidemic data by machine learning techniques. When MLSim learns to match the real data closely, it also models the number of asymptomatic patients. MLSim is learned from the open Chinese global epidemic data. Findings: MLSim showed better forecast accuracy than the SEIR and LSTM-based prediction models. The MLSim learned from the data of China's mainland reveals that there could have been 150,408 (142,178-157,417) asymptomatic and had self-healed patients, which is 65% (64% - 65%) of the inferred total infections including undetected ones. The numbers of asymptomatic but infectious patients on April 15, 2020, were inferred as, Italy: 41,387 (29,037 - 57,151), Germany: 21,118 (11,484 - 41,646), USA: 354,657 (277,641 - 495,128), France: 40,379 (10,807 - 186,878), and UK: 144,424 (127,215 - 171,930). To control the virus transmission, the containment measures taken by the government were crucial. The learned MLSim also reveals that if the date of containment measures in China's mainland was postponed for 1, 3, 5, and 7 days later than Jan. 23, there would be 109,039 (129%), 183,930 (218%), 313,342 (371%), 537,555 (637%) confirmed cases on June 12. Conclusions: Machine learning based fine-grained simulators can better model the complex real-world disease transmission process, and thus can help decision-making of balanced containment measures. The simulator also revealed the potential great number of undetected asymptomatic infections, which poses a great risk to the virus containment.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.27.20045757

ABSTRACT

Background: The first case of COVID-19 atypical pneumonia was reported in Wuhan, China on December 1, 2019. Since then, at least 33 other countries have been affected and there is a possibility of a global outbreak. A tremendous amount of effort has been made to understand its transmission dynamics; however, the temporal and spatial transmission heterogeneity and changing epidemiology have been mostly ignored. The epidemic mechanism of COVID-19 remains largely unclear. Methods: Epidemiological data on COVID-19 in China and daily population movement data from Wuhan to other cities were obtained and analyzed. To describe the transmission dynamics of COVID-19 at different spatio-temporal scales, we used a three-stage continuous-time Susceptible-Exposed-Infectious-Recovered (SEIR) meta-population model based on the characteristics and transmission dynamics of each stage: 1) local epidemic from December 1, 2019 to January 9, 2020; 2) long-distance spread due to the Spring Festival travel rush from January 10 to 22, 2020; and 3) intra-provincial transmission from January 23, 2020 when travel restrictions were imposed. Together with the basic reproduction number (R_0) for mathematical modelling, we also considered the variation in infectivity and introduced the controlled reproduction number (R_c) by assuming that exposed individuals to be infectious; we then simulated the future spread of COVID across Wuhan and all the provinces in mainland China. In addition, we built a novel source tracing algorithm to infer the initial exposed number of individuals in Wuhan on January 10, 2020, to estimate the number of infections early during this epidemic. Findings: The spatial patterns of disease spread were heterogeneous. The estimated controlled reproduction number (R_c) in the neighboring provinces of Hubei province were relatively large, and the nationwide reproduction number (except for Hubei) ranged from 0.98 to 2.74 with an average of 1.79 (95% CI 1.77-1.80). Infectivity was significantly greater for exposed than infectious individuals, and exposed individuals were predicted to have become the major source of infection after January 23. For the epidemic process, most provinces reached their epidemic peak before February 10, 2020. It is expected that the maximum number of infections will be approached by the end of March. The final infectious size is estimated to be about 58,000 for Wuhan, 20,800 for the rest of Hubei province, and 17,000 for the other provinces in mainland China. Moreover, the estimated number of the exposed individuals is much greater than the officially reported number of infectious individuals in Wuhan on January 10, 2020. Interpretation: The transmission dynamics of COVID-19 have been changing over time and were heterogeneous across regions. There was a substantial underestimation of the number of exposed individuals in Wuhan early in the epidemic, and the Spring Festival travel rush played an important role in enhancing and accelerating the spread of COVID-19. However, China's unprecedented large-scale travel restrictions quickly reduced R_c. The next challenge for the control of COVID-19 will be the second great population movement brought by removing these travel restrictions.


Subject(s)
COVID-19 , Pneumonia
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.30.20044099

ABSTRACT

COVID-19 has become a pandemic. The influence of meteorological factors on the transmission and spread of COVID-19 if of interest. This study sought to examine the associations of daily average temperature (AT) and relative humidity (ARH) with the daily count of COVID-19 cases in 30 Chinese provinces (in Hubei from December 1, 2019 to February 11, 2020 and in other provinces from January 20, 2020 to Februarys 11, 2020). A Generalized Additive Model (GAM) was fitted to quantify the province-specific associations between meteorological variables and the daily cases of COVID-19 during the study periods. In the model, the 14-day exponential moving averages (EMAs) of AT and ARH, and their interaction were included with time trend and health-seeking behavior adjusted. Their spatial distributions were visualized. AT and ARH showed significantly negative associations with COVID-19 with a significant interaction between them (0.04, 95% confidence interval: 0.004-0.07) in Hubei. Every 1{degrees}C increase in the AT led to a decrease in the daily confirmed cases by 36% to 57% when ARH was in the range from 67% to 85.5%. Every 1% increase in ARH led to a decrease in the daily confirmed cases by 11% to 22% when AT was in the range from 5.04{degrees}C to 8.2{degrees}C. However, these associations were not consistent throughout Mainland China.


Subject(s)
COVID-19 , Agnosia
SELECTION OF CITATIONS
SEARCH DETAIL